
UNCLASSIFIED

UNCLASSIFIED

On the Design of a Comprehensive Authorisation
Framework for Service Oriented Architecture (SOA)

Sarath Indrakanti

Cyber and Electronic Warfare Division
Defence Science and Technology Organisation

DSTO-TN-1193

ABSTRACT

Service Oriented Architecture (SOA) has attracted considerable industry attention because of the
benefits it offers such as allowing interoperability over a heterogeneous environment, amongst
others. However, security is one of the main roadblocks for enterprises when it comes to the
development and deployment of their SOAs. Although there are several SOA security standards
available, there is as yet no standard available for SOA authorisation. In this report, we propose a
comprehensive authorisation framework for SOA.

Approved for public release

RELEASE LIMITATION

UNCLASSIFIED

UNCLASSIFIED

Published by

Cyber and Electronic Warfare Division
DSTO Defence Science and Technology Organisation
PO Box 1500
Edinburgh South Australia 5111 Australia

Telephone: 1300 DEFENCE
Fax: (08) 7389 6567

© Commonwealth of Australia 2013
AR-015-670
July 2013

APPROVED FOR PUBLIC RELEASE

UNCLASSIFIED

UNCLASSIFIED

On the Design of a Comprehensive Authorisation
Framework for Service Oriented Architecture (SOA)

Executive Summary

Over recent years, Service Oriented Architecture (SOA) has attracted considerable
industry attention because of the benefits it offers such as allowing interoperability over a
heterogeneous environment, amongst others. SOA can be used to build new solutions
leveraging services, to integrate existing applications, or to cleave apart existing
applications. SOA provides many benefits, such as cost saving to organisations by
increasing the speed of implementation of any application(s), and reducing the
expenditure on integration technologies. However, security is one of the main roadblocks
for enterprises when it comes to the development and deployment of their SOAs.

There are several security standards available to guide secure design, development and
deployment of SOA in organisations. There have also been several research and
development efforts in both industry and academia striving to provide security services
for SOA. However, there is as yet no standard available for SOA authorisation. Having
looked at the design requirements for SOA authorisation by means of an extensive
literature survey in previous work, we developed an authorisation model for SOA.

In this report, we propose a comprehensive authorisation framework for SOA. The
framework comprises the Web Services Authorisation Architecture (WSAA) and the
Business Processes Authorisation Architecture (BPAA) — designed for the Web service
and business process layers of SOA. We describe the architectural framework, the
administration and runtime aspects of both our architectures and their components for
secure authorisation of Web services and business processes as well as the support for the
management of authorisation information. We also discuss the benefits of our
authorisation framework for SOA.

Our understanding is that IBM’s Defence Operations Platform (DOP)1 has been adopted
by Australian Defence to build SOA services. We believe there is scope in the future to
take into consideration real Defence services and their access control requirements, and
research potential integration points of our comprehensive SOA authorisation framework
into the DOP.

1 http://www-01.ibm.com/software/industry/defense-operations-platform/

UNCLASSIFIED

UNCLASSIFIED

This page is intentionally blank

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED

Contents

ACRONYMS

1. INTRODUCTION... 4

2. SOA AUTHORISATION CHALLENGES ... 1

3. DESIGN OF THE WEB SERVICES AUTHORISATION ARCHITECTURE
(WSAA) ... 4
3.1 System Components... 5

3.1.1 Web Services Model .. 6
3.1.2 Web Services Administration .. 7
3.1.2.1 Web service object location .. 9
3.1.2.2 Shape of the tree .. 11
3.1.3 Authorisation Administration and Policy Evaluation 11
3.1.4 Runtime Authorisation Data.. 13
3.1.4.1 CRM algorithm .. 13
3.1.5 Authorisation Algorithms.. 14
3.1.6 Sequence of steps involved in Authorisation 14

3.2 Extensions to the Web Service Description and Messaging Layers.............. 17
3.2.1 WS-AuthorisationPolicy statement... 17
3.2.2 Security Manager Location .. 18
3.2.3 SOAP Header Extension... 18

3.3 Benefits of the WSAA .. 19

4. DESIGN OF THE BUSINESS PROCESS AUTHORISATION
ARCHITECTURE (BPAA)... 20
4.1 Business Processes Authorisation Architecture (BPAA) 21
4.2 Design of the Architecture .. 21

4.2.1 System Components ... 21
4.2.2 Business Process Definition and Administration 22
4.2.3 Authorisation Administration and Policy Evaluation 23
4.2.4 Runtime Authorisation Data.. 23
4.2.5 Credential Manager (CRM) Algorithms .. 23
4.2.5.1 Static Business Process Algorithm .. 24
4.2.5.2 Dynamic Business Process Algorithm.. 24
4.2.6 Authorisation Algorithms.. 24
4.2.7 Extensions to the Description and Messaging Layers...................... 24
4.2.7.1 BP-AuthorisationPolicy statement.. 25
4.2.7.2 Business Process Security Manager Location.................................... 26
4.2.7.3 SOAP Header Extension... 27

4.3 Authorisation Coordination Framework for Dynamic Business Processes 29
4.3.1 Authorisation Coordinator WSDL Interfaces.................................... 32
4.3.2 Participant Interfaces .. 34

4.4 Extension to the Authorisation Coordination Framework 35
4.4.1 Extended Authorisation Coordination Steps 37
4.4.2 Discussion... 39

4.5 Benefits of the BPAA ... 40

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED

5. CONCLUDING REMARKS ... 40

6. REFERENCES .. 41

APPENDIX A .. 44

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED

Acronyms

Acronym Full Name

AAD Authorisation Administration Database
ARD Authorisation Runtime Database
ACL Access Control List
ACO Authorisation Coordinator
ADC Authorisation Decision Composer
APE Authorisation Policy Evaluator
AS Activation Service
ANS Authentication Server
AZM Authorisation Manager
AZS Authorisation Server
BP Business Process
BPAA Business Process Authorisation Architecture
BPAD Business Process Administration Database
BPEL Business Process Execution Language
BPSM Business Process Security Manager
C2 Command and Control
CCA Certificate and Credential Authority
CP Client Proxy
CRM Credential Manager
DAC Discretionary Access Control
DAS Dynamic Attribute Service
IPsec Internet Protocol Security
JAAS Java Authentication and Authorisation Service
MAC Mandatory Access Control
RBAC Role Based Access Control
RCA Regional Commander Agent
RS Registration Service
SCA Strategic Commander Agent
SM Security Manager
SOA Service Oriented Architecture
SSL Secure Sockets Layer
TCA Tactical Commander Agent
TLS Transport Layer Security
UDDI Universal Description Discovery and Integration
URI Uniform Resource Identifier
URN Uniform Resource Name
WAD Web service Administration Database
WS Web Service
WSAA Web Service Authorisation Architecture
WS-BPEL Web Services Business Process Execution Language
WSC Web Service Collection
WSCM Web Service Collection Manager
WSDL Web Services Description Language
WSM Web Service Manager
XML eXtensible Markup Language

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED

This page is intentionally blank

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
1

1. Introduction

In general, security for Service Oriented Architecture (SOA) is a broad and complex area
covering a range of technologies. At present, there are several efforts underway that are striving
to provide security services for SOA. A variety of existing technologies can contribute to this
area such as TLS/SSL [1] and IPsec [2]. There are also related security functionalities such as
XML Signature [3] and XML Encryption [4] and their natural extensions to integrate these
security features into Web service technologies such as SOAP [5] and WSDL [6].

The WS-Security specification [7] describes enhancements to SOAP messaging to provide
message integrity, confidentiality and authentication. The WS-Trust [8] language uses the secure
messaging mechanisms of the WS-Security specification to define additional primitives and
extensions for the issuance, exchange and validation of security tokens within different trust
domains. While there is a large amount of work on general access control and more recently on
distributed authorisation [9], research in the area of authorisation for Web services is still at an
early stage. There is not yet a specification or a standard for Web services authorisation. There
are attempts by different research groups [10-13] to define authorisation models for Service-
Oriented Architecture (SOA). Currently most Web service based applications, having gone
through the authentication process, make authorisation decisions using application specific
access control functions that results in the practice of frequently re-inventing the wheel. This
motivated us to have a closer look at authorisation challenges for SOA. Please note that the work
discussed in this report borrows heavily from the author’s PhD thesis [14].

2. SOA Authorisation Challenges

SOA comprises Web services and business workflows (also called business processes [15]) built
using Web services. Figure 1 shows the layers comprising SOA along with their respective
security services.

Web services may potentially expose business logic presented via a complex layered system. For
example, a Web service could be a portal service rendered via a Web browser that shows
information from various sources such as files, databases and RSS feeds. The same portal service
may provide functionality written using new Web services designed from scratch. Alternatively,
a Bank may expose a legacy application (written in Cobol) as a Web service. An authorisation
service designed for the Web services layer of SOA needs to consider all these scenarios. It must
be able to support multiple models of access control used by these types of services. The access
control models used may be established ones such as Role Based Access Control (RBAC) [16] or
perhaps even new ones designed for the use case in question.

Consider the Sales Order service shown in Figure 2. Each method of the Sales Order service
performs one or more of these three operations — Web operation, Mail operation and Database
operation. Each of these operations uses a different access control mechanism. The Web
operations may be authorised using, for instance, the Java Authentication and Authorisation
Service (JAAS) [17], the Mail operations using a simple access control list (ACL), and the
Database operations using the RBAC model.

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
2

Figure 1. Layers in SOA (adopted from [14])

Figure 2. Sales Order service (adapted from [14])

An authorisation architecture for the business process layer of SOA must provide orchestration
services to coordinate the authorisation decisions from an individual partner’s authorisation
policy evaluators. Each partner must be allowed to control its own authorisation policies and
also not be required to disclose them to the entire workflow or to the workflow engine. Even in
cases where the binding to actual end-points of partner services happens dynamically at
runtime, the authorisation architecture must be able to orchestrate the partners’ authorisation

Business
Process

Security Layer

Business
Process Layer

Web Services
Security Layer

Web Services
Technology

Confidentiality, Integrity
and Authentication

Authorisation

Authorisation

WS-BPEL Coordination Transaction

Confidentiality, Integrity
and Authentication

Web Services Messaging
Layer

SOAP (extensions
required to Header)

Web Services Description
Layer

WSDL (extensions
required to Schema)

UDDI Web Services Discovery
Layer

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
3

policy evaluators and arrive at an authorisation decision. In the Command and Control (C2) use
case shown in Figure 3, each of the partner services (agents) may potentially use their own
access control mechanism. The partner agent (for example, Tactical Commander Agent (TCA))
may not wish to disclose its policies to the Regional Commander Agent (RCA). Similarly, other
partners also may not wish to disclose their policies to be combined by the Strategic Commander
Agent in order to authorise the client. In the course of the workflow, the commander (client)
needs to get authorised seamlessly to partner services (agents) while delivering the Operational
Orders as described in [18, 19].

Figure 3. Command and Control Use Case (adapted from [18, 19])

Currently, there are a few authorisation schemes that are designed either for the Web services
layer [10-12, 20, 21] or the business process layer [22-25] of SOA. After carrying out a survey [26]
and analysis of the existing authorisation frameworks built for SOA and other distributed
systems, we understand the design requirements for authorisation services for the Web service
and business process layers of SOA. In this report, we propose a comprehensive authorisation
framework for SOA by taking into account the design requirements we proposed in [27, 28]. We
also compare related work to our authorisation framework in [26].

Our authorisation framework for SOA comprises the Web Services Authorisation Architecture
(WSAA) [21, 29], built for the Web services layer of SOA and, the Business Process Authorisation
Architecture (BPAA) [25], built for the business processes layer of SOA. BPAA leverages WSAA
and extends its functionality. Section 3 describes the design of the WSAA and Section 4 describes
the design of the BPAA. The WSAA and BPAA are indicated by the light-grey coloured boxes in
Figure 1. Extensions to the Web services description and messaging layers are also proposed to
support the unified SOA authorisation framework; these extensions are indicated by the dark-
grey coloured boxes in Figure 1.

Client
(Commander)

Regional Commander
Agent (RCA1)

Regional Commander
Agent (RCA2)

Regional Commander
Agent (RCA3)

Tactical Commander
Agent (TCA4)

Tactical Commander
Agent (TCA3)

Tactical Commander
Agent (TCA2)

Tactical Commander
Agent (TCA1)

Strategic Commander
Agent (SCA)

Policies
- Own AC Mechanism
- Policies Combined Here?

Policies, AC Mechanism 1 Policies, AC Mechanism 2 Policies, AC Mechanism 3

Policies, AC Mechanism 6 Policies, AC Mechanism 7

Policies, AC Mechanism 4 Policies, AC Mechanism 5

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
4

3. Design of the Web Services Authorisation Architecture
(WSAA)

The WSAA comprises an administrative domain and a runtime domain (see Figure 4). We
manage Web services in the administration domain by arranging them into collections and the
collections themselves into a hierarchy. We provide administration support to manage a
collection of Web services. We also provide support for the arrangement (adding, removing) of
Web services within the collections and the movement of Web services within collections.
Authorisation related components such as authorisation policy evaluators (evaluate
authorisation policies), certificate and credential authorities (provide authentication certificates
and authorisation credentials) and dynamic attribute services (provide attributes required at
runtime for authorisation) can be managed in the administration domain. Also security
administrators can assign a set of authorisation policy evaluators to authorise requests to Web
services.

Figure 4. Web Services Authorisation Architecture (WSAA) (adopted from [14])

To make the authorisation process efficient, we have a runtime domain where the authorisation
related information such as what credentials are required to invoke a particular Web service and
how to collect those credentials, is compiled and stored. This information is automatically
compiled from time to time when necessary using the information from the administration
domain and it can be readily used by the components in the runtime domain.

The Registry Server located anywhere in the Internet (see Figure 4) is responsible for
maintaining relations between services and their service providers. When a client requests the
Registry Server for a specific service, the latter responds with a list of Web services that
implement the requested service. For example, a UDDI [30] directory is a Registry Server.

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
5

3.1 System Components

We define the set of Authorisation Policy Evaluators, Certificate and Credential Authorities,
Dynamic Attribute Services, and Authorisation Decision Composers as objects in our system.
The Authorisation Manager (AZM) for the organisation is responsible to manage these
components. S/he uses the Authorisation Administration API to manage them and the related
data is stored in the Authorisation Administration Database (AAD). These objects are formally
defined in Definitions 1- 4 below.

Certificate and Credential Authority (CCA): A CCA is responsible to provide authentication
certificates and/or authorisation credentials required to authenticate and/or authorise a client.
For example, a CCA may provide authentication certificates such as X.509 certificates [31] or
authorisation credentials such as a Role Membership Certificate (RMC) [32] or a Privilege
Attribute Certificate (PAC) [33].

Dynamic Attribute Service (DAS): A DAS provides system and/or network attributes such as
bandwidth usage and time of the day. A dynamic attribute may also express the properties of a
subject that are not administered by security administrators. For example, a Security Officer may
only access a Defence employee’s record if they are located within a Defence site. A DAS may
provide the Security Officer’s ‘location status’ attribute at the time of access control. Dynamic
attributes’ values change more frequently than traditional static authorisation credentials (also
called privilege attributes) such as a Role Membership Certificate. Unlike authorisation
credentials, dynamic attributes must be obtained at the time an access decision is required and
their values may change within a session.

Authorisation Policy Evaluator (APE): An APE is responsible for making an authorisation
decision on one or more abstract system operations. Every APE used by an organisation may use
a different access control mechanism and a different policy language to specify authorisation
policies. However, we define a standard interface for the set of input parameters an APE expects
(such as subject identification, object information, and the authorisation credentials) and the
output authorisation result it provides.

Authorisation Decision Composer (ADC): An ADC combines the authorisation decisions from
APEs using an algorithm that resolves authorisation decision conflicts and combines them into a
final decision.

Definition 1. Certificate and Credential Authority

We define Certificate and Credential Authority as a tuple cca = {i, l, CR, pa, ra(pa)} where i is a
URN, l is a string over an alphabet Σ* representing a network location such as a URL, CR is the
set of authentication certificates and/or authorisation credentials cca provides, pa is an input
parameter representing a subject, ra uses pa and gives out an output (result) that is the set of
credentials for the subject.

Definition 2. Dynamic Attribute Service

We define Dynamic Attribute Service as a tuple das = {i, l, AT, pd, rd(pd)}, where i is a URN, l is
a string over an alphabet Σ* representing a network location such as a URL, AT is the set of
attributes that das provides, pd is input parameter(s) representing attribute(s) name(s), rd uses
pd and gives out an output (result) that is the value of the attribute(s).

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
6

Definition 3. Authorisation Policy Evaluator

We define Authorisation Policy Evaluator as a tuple ape = {i, l, pe, re(pe), OP, DAS, CCA}, where
i is a URN, l is a string over an alphabet Σ* representing a network location such as a URL, pe is
the set of input parameters such as subject and object details, re is a function that uses pe and
gives out an output (result) of authorisation decision. OP is the set of abstract system operations
for which ape is responsible. DAS is the set of Dynamic Attribute Services responsible for
providing dynamic runtime attributes to ape. ape uses these attributes to make authorisation
decisions. CCA is the set of Certificate and Credential Authorities that provide the credentials
required by ape.

Definition 4. Authorisation Decision Composer

We define Authorisation Decision Composer as a tuple adc = {i, l, a, pc, rc(pc)}, where i is a
URN, l is a string over an alphabet Σ* representing a network location such as a URL, a is the
name of a pre-defined algorithm adc uses to combine the decisions from the individual
authorisation policy evaluators. pc is an input parameter representing the decisions from the
individual Authorisation Policy Evaluators involved. rc uses pc and the algorithm a to combine
the decisions and gives out an output (result) that is the value of the final authorisation decision.

The runtime domain consists of the Client Proxy, Security Manager, Authentication Server and
the Authorisation Server components.

Client Proxy (CP) is an automated component that collects the required authentication
certificates and authorisation credentials from the respective authorities on behalf of the client
before sending a Web service request and handles the session on behalf of the client with a Web
service’s Security Manager. It runs on the client side.

Security Manager (SM) is a component responsible for both authentication and authorisation of
the client. The SM receives the necessary authentication certificates and authorisation credentials
from the CP and sends them to the Authentication Server and the Authorisation Server for
evaluation. It is responsible for managing all the interactions with a client’s CP.

Authentication Server (ANS) receives the authentication certificates from the SM and uses some
mechanism to authenticate the client. We treat ANS as a black box in our architecture as our
focus is on authorisation of the client. We included this component in the Web services security
layer for completeness. Note that the authentication of a client is a prerequisite to their
authorisation.

Authorisation Server (AZS) decouples the authorisation logic from application logic. It is
responsible for locating all the Authorisation Policy Evaluators involved, sending the
authorisation credentials to them and receiving the authorisation decisions. Once all the
decisions come back, it uses the responsible Authorisation Decision Composers (ADCs) to
combine the authorisation decisions. Where required, AZS also collects the credentials on behalf
of clients from the respective Certificate and Credential Authorities (CCAs).

3.1.1 Web Services Model

We consider a Web service model where Web Service, Web Service Method and Web Service
Collection are viewed as objects. Web service collections are used to group together a set of
possibly related Web service objects. Authorisation related information can be managed in a
convenient way if a set of related Web service objects is grouped together in a hierarchy of

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
7

collections. Hierarchical containment is widely used in current Internet information systems
such as Web servers, file systems, URLs and is well understood. We formally define
(Definitions 5-7) the Web Service, Web Service Method and Web Service Collection objects based
on the model discussed in [34].

Definition 5. Web Service

We define a Web Service as a tuple ws = {i, b, l, Σ, OPws, M, MD, wsm, sm}, where i is a non-empty
string over an alphabet Σ* representing a globally unique identifier such as a URN, b is a string
over an alphabet Σ* representing a network protocol binding such as SOAP over HTTP, l is a
string over an alphabet Σ* representing a network location such as a URL, Σ is a finite set of
states representing the internal state of the object at a given time, OPws is the set of abstract
operations (for e.g. Database operation such as create table, read a row in a table, or File
operation such as read and write) performed by the methods of the ws object. M is the set of
supported Web service methods, MD is the metadata providing additional description for ws.
wsm is the identity of the Web Service Manager responsible for managing the ws object. sm is the
location of the Security Manager responsible for securing ws object. Σ, M, OPws or MD can be the
empty set Ø.

Definition 6. Web Service Method

We define a Web Service Method as a tuple m = {i, ws, OPm, pm, rm(pm), MD}, where i is a URN,
ws is the Web service object the method belongs to, OPm is the set of abstract operations the
method m performs. OPm is a subset of the set OPws defined in the ws object. pm is the set of input
parameters, string over an alphabet Σ*, rm is a function Σ* → Σ* that maps pm onto a result string
over an alphabet Σ* representing the output (result) or return value(s) of a computation. pm and
rm(pm) may be the empty string €. MD is a set of metadata providing additional description for
method m. OPm or MD can be the empty set Ø. A method m has to be a member of exactly one
ws.

Definition 7. Web Service Collection

We define a Web Service Collection (WSC) as a tuple wsc = {i, WS, WSCCHILDREN, p, MD, wcm, sm},
where i is a URN, WS is a finite set of (possibly related) Web service objects in wsc, WSCCHILDREN
is a finite set of Web service collections that are children of wsc, p is the parent WSC (a WSC can
have only one parent collection), MD is a finite set of metadata providing additional description
and semantics for wsc. wcm is the identity of the Web service Collection Manager responsible for
wsc. sm is the location of the Security Manager responsible for wsc. sm is null for all Web service
collections in a hierarchy except for the root Web service collection, or the one without a parent
p. In other words, if a wsc object has a parent p, it does not have a Security Manager. A root
WSC’s Security Manager is responsible for authentication and authorisation of requests to all the
Web services (Web service objects) under its descendant collections. Figure 5 shows an example
of a hierarchy of Web service collections.

3.1.2 Web Services Administration

In this section, we discuss the administration support provided by the WSAA to manage a
collection of Web services.

A Web Service Manager (WSM) manages Web Services and Web Service Methods. A Web
service Collection Manager (WCM) manages Web Service Collections using the Administration
API (see Figure 4). These objects are stored in the Web service Administration Database (WAD).

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
8

Figure 5. Web Service Collection Hierarchy (adopted from [14])

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
9

Figure 6. Web Services Collection Hierarchy (adopted from [14])

To effectively manage the collections, we arrange a set of related Web Service Collection (WSC)
objects in a tree-shaped hierarchy as shown in Figure 6. Each WSC in the hierarchy has a
responsible Web service Collection Manager (WCM). Now the following questions arise. Who
can create the hierarchy structure? Who can add and delete Web Service (WS) objects to/from a
WSC? Who has the privilege to move a WS object from one WSC to another? Before we answer
these questions, we first define a root WCM.

In a WSC hierarchy tree, the root WSC’s manager is called the Root Web service Collection Manager
(RWCM). A RWCM is responsible for providing the Security Manager details in the WSDL
statement of every Web service located under the collections it manages. RWCM provides these
details using our extensions (discussed in Section 3.2) provided to the Web service description
layer.

Let us now consider an organisation with a single hierarchy (such as the one shown in Figure 6)
of Web service collections. In Figure 6, the root WSC is WSC1 and the RWCM is WCM1. We can
consider a newly initiated system to simply consist of the root WSC, WSC1 and a few WS objects
under it managed by WCM1. Now what can WCM1 do with WS objects under WSC1? S/he can
add new WS objects from WAD into WSC1. S/he can delete or move WS objects within the
collections it is responsible for. Now there are two basic issues to consider.
1) Who decides the location of a WS object (and how is the location changed)?
2) Who decides the shape of the tree itself?

3.1.2.1 Web service object location

Consider the example shown in Figure 6. A WS object WS1 resides in WSC3 managed by WCM3.
Who has the authority to move a WS object from one WSC to another? For example, who has the
authority to move WS1 from WSC3 to WSC5? We can immediately rule out WCM4 and WCM5.
WCM5 has no authority over WS1 at all (even if the point of the exercise is to give it the

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
10

authority). A WCM should not be able to arbitrarily assume authority over another WSC’s
objects. Can WCM3 make the transfer? WCM3’s ability to do the transfer is a viable option.
WCM1 and WCM2 may also be able to make the change. WS1 resides in their descendant
collection WSC3. So it could be argued that they should be able to carry out the operation. In fact,
it could be argued that only they could do it, as once a WCM is given responsibility for a WS
object, they should not divest themselves of it. Hence WCM3 should not be able to carry out the
operation. Alternately, it may be desired to restrict the authority to make all such changes to
only a single entity, in this case, the RWCM - WCM1. So we have three possible options, each
reflecting different organisational approaches:

a. The WCMs of the ancestor WSCs of the WSC in which the WS object being moved resides
b. Both the WCM of the immediate WSC in which the WS object resides and the WCMs of
the ancestor WSCs of the WSC in which the WS object resides
c. The RWCM

It could be argued that a fourth option exists, that only the WCM of the immediate WSC (in this
case WCM3) can move the object. But as the meaning of the hierarchy is that a WS object resides
in both its immediate WSC and in the ancestor WSC, this seems counter-intuitive. In the
example, if WCM3 is to have the authority, then it should not be placed as a subordinate to the
other WCMs.

Option a presents a problem in the case of WS objects under a root WSC, as there are no
ancestors in this case. This can be solved either by not allowing any WS objects to actually reside
in the root WSC or by making an exception for the root WSC (effectively combining options a
and c). In some sense the RWCM is a super user. Some organisations may not wish to have such
a user, but for our purposes, this could be handled by having multiple WSC hierarchies in an
organisation each managed by different RWCM.

The next question is, are there any limits to the destination of the WS object while making a
move within the hierarchy? The most restrictive is to allow a WCM to move a WS object to a
WSC under its control (the immediate WSC managed and other descendant WSCs). Less
restrictive options are to allow a WS object to be passed to the parent WSC or any other ancestral
WSCs. The target WSC to which a WS object is moved in the tree may be:

1. Any WSC in the tree
2. The WSC of the WCM making the move or any descendant WSC
3. As in 2 plus the immediate parent WSC
4. As in 2 plus any ancestor WSCs

Combining this with the example above, we would have the rule that a WCM can relocate any
WS object that resides in their immediate WSC or any descendant WSCs to a target WSC that is
either the WSC managed, any descendant WSC or any ancestor WSC. Note that this also gives
us a rule placing a new WS object into a WSC. Let us again consider our example from Figure 6
of moving WS1 object from WSC3 to WSC5. Under rule 3 above, only WCM1 or WCM2 could
perform the operation. Only under option 2 on which WCM can make the move and option 1 on
destination could WSM3 move the WS1 object. Even with option 2 on who can make the move,
any other choice of options but option 1 for destination control prevents WCM3 from making the
move. Another possible option might be that WS objects could be transferred to sibling WSCs.
This would then allow WCM3 to move WS1 object from WSC3 to WSC5. We find it likely that
some organisations would not allow such transfers of responsibility without the involvement of
more senior authority. However, it would allow WSC management structures to be created
where WS objects could be transferred between the WSCs of a specified group of WCMs without
allowing unrestricted transfers to any point in the hierarchy tree. This could be achieved with
the combination of any of the options 2, 3 and 4 above.

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
11

3.1.2.2 Shape of the tree

Let us now briefly consider the creation and deletion of WSCs and the appointment of WCMs
for the WSCs. Initially, a root WSC with a RWCM is created. RWCM appoints himself/herself to
the root WSC. Organisations could also use a simple rule where manipulating the shape of the
tree be restricted to the RWCM. A similar rule can apply to deleting WSCs from a tree. In this
case, the RWCM appoints the WCMs for all the WSCs in the tree.

In a less restrictive scenario, any WCM in the tree should only be able to create and delete the
descendant WSCs as well as appoint a WCM for the WSC s/he manages. Manipulating the
WSCs for which the WCM has no responsibility is obviously undesirable.

3.1.3 Authorisation Administration and Policy Evaluation

A Web Service Manager (WSM) is responsible to manage the authorisation related information for
the Web services s/he is responsible for. We consider a Web service method to be a high-level
task that is exposed to clients. Each task (method) is made up of a number of system operations.
These operations can be of different abstract types. For instance, each method of the Sales Order
service shown in Figure 2 performs one or more of these three operations – Web operation,
Database operation and Mail operation. Each of these operations has a responsible Authorisation
Policy Evaluator (APE). Web operations are authorised by using the Java Authentication and
Authorisation Service; Database operations are authorised by the Privilege Management
Infrastructure (PMI); and the Mail operations are authorised by using a Role-based Access
Control (RBAC) mechanism. It is reasonable to assume a WSM knows the set of organisation-
defined tasks (such as Web operation in the case of Sales Order Service) a Web service under
his/her control performs. Similarly a WSM knows the set of operations each of these tasks
(methods) perform. The WSM associates these operations to the Web services and their methods.
Then using the APE definitions from the Authorisation Administration Database (AAD), the
administration domain automatically associates APEs to Web service methods. The association
to APEs happens based on the operations the WSM associates with Web service methods. For
instance, suppose that APE1 provides authorisation for Web operations and APE2 provides
authorisation for mail operations, and the WSM chooses Web operation and mail operation as
operations for the ‘submit order’ method of Sales Order Service. In this case, APE1 and APE2 are
automatically associated with the ‘submit order’ method of Sales Order Service. This association
is made in the Web Service Method Authorisation (WSMA) object. The object is stored in the AAD
(see Figure 4). Therefore, we are able to separate authorisation responsibilities from Web Service
Managers who are typically involved in developing Web services.

Similar to Web service methods, a Web service can also have one or more APEs responsible for
Web service level authorisation. A WSM may associate one or more APEs to a Web service
manually should s/he decide to do so. This association is made in the Web Service Authorisation
(WSA) object. The object is stored in the AAD (see Figure 4). We give this provision to enable
WSMs (or Web service developers) to associate coarse-grained authorisation with the Web
services they manage. For instance, APE3 can be associated to Sales Order Service. Web service
level policies are first evaluated before its method level authorisation policies are evaluated. A
Web service’s APEs evaluate Web service level authorisation policies. These policies will
typically be relatively coarse-grained and not be as fine-grained as method level authorisation
policies. A WSM may choose to create a new Authorisation Decision Composer (ADC) for one or
more Web services s/he manages or may decide to use one from the set of existing ADCs from
the AAD if it serves the purpose.

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
12

Similar to Web services and their methods, a Web service collection can also have one or more
APEs responsible for authorising access to the collection itself. A WCM may associate one or
more APEs to a Web service collection manually should s/he decide to do so. This association is
made in the Web Service Collection Authorisation (WSCA) object. The object is stored in the AAD.
We give this provision to enable WCMs to associate coarse-grained authorisation with the Web
service collections they manage. Collection level policies are first evaluated before Web service
level authorisation policies are evaluated. A Web service collection’s APEs evaluate collection
level authorisation policies. These policies will typically be coarse-grained when compared to
Web service and Web service method level policies. Every root Web service collection has an
ADC associated with it responsible for combining the decisions from all the APEs involved. The
coarse-grained authorisation policies for all relevant ancestor Web service collections (of an
invoked Web service) are first evaluated, followed by the Web service level authorisation
policies and finally the fine-grained Web service method level policies are evaluated. The coarse-
grained policies are first evaluated before the finer-grained policies as it helps reduce the
computing cost. If the client is not authorised by a coarse-grained policy, access can be denied
straight away. For example in Figure 6, when a client invokes WS1’s method M1, WSC1’s
authorisation policies are first evaluated by APE1 and APE2, followed by WSC2 (APE3) and then
WSC3 (APE4) policies. If APE1, APE2, APE3 and APE4 give out a positive decision, WS1’s
authorisation policies are evaluated by APE6. If APE6 gives out a positive decision, then finally
M1’s authorisation policies are evaluated by APE7 and APE8. WS1’s Authorisation Decision
Composer, ADCWS1 combines the decisions from APE6, APE7 and APE8 and if the final decision
is positive, WSC1’s authorisation decision composer, ADCWSC1 combines the decisions from
APE1, APE2, APE3, APE4 and ADCWS1. If the final decision from ADCWSC1 is positive, the client
will be authorised to invoke WS1’s method M1.

WSMs manage WSA and WSMA using the Authorisation Administration API. Similarly WCMs
manage WSCA objects using the Authorisation Administration API. WSA, WSMA and WSCA
objects are stored in the AAD. We formally define WSA, WSMA and WSCA objects in
Definitions 8–10.

Definition 8. Web Service Method Authorisation

We define Web Service Method Authorisation as a tuple wsma = {i, m, APEm}, where i is a URN,
m is the URN of the method for which the wsma object is defined. APEm is the set of URNs of the
Authorisation Policy Evaluators responsible for authorising requests from a client to the method
m.

Definition 9. Web Service Authorisation

We define Web Service Authorisation as a tuple wsa = {i, ws, APEws, adcws}, where i is a URN, ws
is the URN of the Web Service for which wsa is defined. APEws is the set of URNs of the
Authorisation Policy Evaluators responsible for authorising requests from a client to ws. adcws is
the URN of the Authorisation Decision Composer for ws. It is responsible for combining the
decisions from Authorisation Policy Evaluators in the set APEws.

Definition 10. Web Service Collection Authorisation

We define Web Service Collection Authorisation as a tuple wsca = {i, wsc, APEwsc, adcroot}, where i
is a URN, wsc is the URN of the Web Service Collection for which the wsca object is defined.
APEwsc is the set of URNs of the Authorisation Policy Evaluators responsible for wsc. adcroot is the
URN of the Authorisation Decision Composer for wsc. If wsc is not a root Web Service Collection,
then adcroot is null. In other words, adcroot exists only for a root wsc.

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
13

3.1.4 Runtime Authorisation Data

APEs and ADCs have now been assigned to Web services and Web service collections. The next
question is, at runtime, how does a client know (where necessary) how to obtain the required
authorisation credentials and dynamic runtime attributes before invoking a Web service? What
are the responsible APEs (and the credentials and attributes they require), CCAs (the credentials
they provide) and the DASs (the attributes they provide)? How does the AZS know what the set
of responsible ADCs (adcws and adcroot) for a particular client request is?

To answer these questions, we have an Authorisation Runtime Database (ARD) in the runtime
domain. ARD consists of the runtime authorisation related information required by the clients
(Client Proxies) and the Authorisation Server. The Credential Manager (CRM) is an automated
component that creates and stores the authorisation runtime information in ARD using the
information from the WAD and AAD databases. The runtime authorisation information consists
of three tuples defined in Definitions 11–13. The CRM is invoked from time to time, when a Web
service object is added to or deleted from a collection, moved within a hierarchy of collections or
when the shape of the tree itself changes, to update these tuples in the ARD.

Definition 11. Method-Credential-CCA tuple

We define the Method-Credential-CCA tuple as mcc = {i, m, CR, cca, ape}, where i is a URN, m is a
Web service method to which the tuple is defined, CR is the set of authorisation credentials to be
obtained from the Certificate and Credential Authority cca to be authorised to invoke m. ape is
the Authorisation Policy Evaluator that requires these credentials. This means each m object can
have one or more of these (tuple) entries in the ARD, as an APE may need credentials from more
than one CCA, and more than one APE may control access to the method.

Definition 12. Method-Attribute-DAS tuple

We define the Method-Attribute-DAS tuple as matd = {i, m, AT, das, ape}, where i is a URN, m is a
Web service method to which the tuple is defined, AT is the set of attributes to be obtained from
the Dynamic Attribute Service das. Each m object can have one or more of these (tuple) entries in
ARD. ape is the Authorisation Policy Evaluator that requires these attributes.

Definition 13. WS-ADC tuple

We define the WS-ADC tuple as wsd = {i, ws, adcws, adcroot}, where i is a URN, ws is a Web service,
adcws is the Authorisation Decision Composer for ws. adcroot is the Authorisation Decision
Composer for the root Web service collection in which ws resides.

3.1.4.1 CRM algorithm

CRM creates these tuple entries (from Definitions 11–13) in the Authorisation Runtime Database
(ARD) using the following algorithm:
1. For every Web service method defined in the WAD, it generates a list, APEList of responsible

authorisation policy evaluators using its wsma tuple and related wsa and wsca tuples from
the AAD,

2. For each Authorisation Policy Evaluator, ape in APEList,
a. For each cca responsible for the ape, an mcc tuple is created in the ARD.
b. For each das the ape uses, an matd tuple is created in the ARD.

3. For every Web service object, CRM creates a wsd tuple entry in the ARD using the wsa, wsc
and wsca tuples of the root Web service collection in which the Web service object resides.

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
14

When a Web service object is placed and/or moved within a Web service collection in a tree, the
set of Authorisation Policy Evaluators responsible for authorising a client’s requests changes.
Similarly, the set of Certificate and Credential Authorities and Dynamic Attribute Services
responsible also changes. For example, in Figure 6, when WS1 moves from WSC3 to WSC5, the
set of responsible Authorisation Policy Evaluators for WS1’s method M2 changes from {APE1,
APE2, APE3, APE4, APE6, APE7, APE9}f to {APE1, APE2, APE3, APE5, APE6, APE7, APE9}. Once the
move is made, CRM is automatically invoked and it updates the ARD with the necessary mcc
and matd tuple entries for each method of WS1. In this example, the wsd tuple remains the same
before and after the update. The responsible Authorisation Decision Composers before and after
the move will still be ADCWSC1 and ADCWS1.

3.1.5 Authorisation Algorithms

The WSAA supports three authorisation algorithms. The first, push-model algorithm supports
authorisations where a client’s Client Proxy, using the information in WS-AuthorisationPolicy,
collects and sends the required authorisation credentials (from Certificate and Credential
Authorities) and attributes (from Dynamic Attribute Services) to a Web service’s Security
Manager. The second, pull-model algorithm supports authorisations where the Authorisation
Server (AZS) itself collects the required authorisation credentials from Certificate and Credential
Authorities and the Authorisation Policy Evaluators (APEs) themselves collect the required
attributes from Dynamic Attribute Services. The AZS in this case uses the runtime objects
(tuples) information from the Authorisation Runtime Database to be able to do so. The third,
combination-model supports both the push and pull models of collecting the required
authorisation credentials and attributes.

When the combination-model algorithm is deployed by an organisation, the organisation’s
Authorisation Manager (AZM) may arbitrarily decide whether the authorisation credentials
required from a Certificate and Credential Authority and dynamic attributes required from a
Dynamic Attribute Service for each Web service method, Web service as well as Web service
collection level APEs, are fetched by a Client Proxy (push-model) or by the authorisation
components themselves (pull-model). The AZM may decide to give the entire responsibility of
fetching the required credentials and attributes to the Client Proxy or to authorisation
components or share responsibility of fetching credentials and attributes amongst the Client
Proxy and the authorisation components. This information is reflected in a Web service’s WS-
AuthorisationPolicy, defined in Section 3.2.1.

3.1.6 Sequence of steps involved in Authorisation

We show the sequence of steps involved in authorising clients to Web services, using a system
sequence diagram (see Figure 7). Various objects that participate in the interaction are placed in
the sequence diagram across the X-axis. The object that initiates the action is placed on the left of
the diagram, and increasingly more subordinate objects to the right. The messages that these
objects send and receive are shown along the Y-axis, in order of increasing time from top to
bottom. The Combination model authorisation algorithm shown in Figure 7. Steps involved in
the Push and the Pull models of authorisation are not shown in Figure 7, as they are a subset of
the Combination model authorisation algorithm. In the Push Model, we do not have steps 13.1,
14, 15, 17, and 18 and in the Pull Model we do not have steps 6 and 7. However in the Pull
Model, we still have steps 4 and 5 to fetch the authentication certificates, where required.

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
15

Figure 7. Sequence of steps involved in Combination Model Authorisation (adopted from [14])

(1) A client using an interface queries a Registry Server such as a UDDI directory for a Web
service.
(2) The Registry Server looks up this Web service and returns a list of appropriate Web
service(s).
(3) The client chooses a Web service WS1 and invokes a method on WS1.
(4) The Client Proxy intercepts the Web service request and retrieves WS1’s WSDL statement. It
locates WS1’s WS-SecurityPolicy (for authentication) and WS-AuthorisationPolicy (for
authorisation) statements. Using the information in WS-SecurityPolicy and WS-
AuthorisationPolicy, the Client Proxy requests the required authentication certificates and/or
authorisation credentials from a Certificate and Credential Authority.
(5) The Certificate and Credential Authority sends the required certificates or credentials to the
Client Proxy. Steps 4 and 5 are repeated until all the required authentication certificates and/or
authorisation credentials are collected.
(6) Using the information in WS-AuthorisationPolicy, the Client Proxy requests the required
runtime attributes from a Dynamic Attribute Service.
(7) The Dynamic Attribute Service sends the required attributes to the Client Proxy. Steps 6 and
7 are repeated until all the required attributes are collected.
(8) The Client Proxy sends the Web service (method) request along with the collected
authentication certificates, authorisation credentials and runtime attributes to WS1’s Security
Manager. It finds the Security Manager location using WS1’s WSDL statement.
(9) The Security Manager sends the authentication certificates to the Authentication Server.

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
16

(10) The Authentication Server gets back with a decision. If authentication fails, then the Security
Manager sends an “authentication fail” message to the Client Proxy and the access is denied to
the client (this step is not shown in Figure 7). If authentication is successful, the algorithm
continues as follows:
(11) The Security Manager sends the authorisation credentials and attributes received from the
Client Proxy to the Authorisation Server using the Authorisation API.
(12) The Authorisation Server sends a request to the Database Broker component for the sets of
tuples (runtime objects) for the requested Web service, WS1. The Database Broker fetches these
details from the Authorisation Runtime Database.
(13) The Authorisation Server receives the sets of requested tuples. Using them, the
Authorisation Server creates a list of responsible Authorisation Policy Evaluators, APEList, for the
method requested.
(13.1) For each Authorisation Policy Evaluator in APEList, the Authorisation Server creates a list
of responsible Certificate and Credential Authorities, CCAList.
(14) From each Certificate and Credential Authority in CCAList, the Authorisation Server
requests the set CR of necessary credentials on behalf of the client.
(15) The Certificate and Credential Authority sends the set CR of credentials to the Authorisation
Server. Steps 14 and 15 are repeated until all the credentials are collected. These steps are only
executed if the Client Proxy did not already send the credentials required by the Authorisation
Policy Evaluator.
(16) The Authorisation Server, using the information in the tuples, sends the appropriate
credentials to an Authorisation Policy Evaluator in the APEList, along with the subject (client
authentication details) and target (resource) details.
(17) The Authorisation Policy Evaluator, if necessary, requests a Dynamic Attribute Service to
collect the set AT of runtime attributes required by its authorisation policies.
(18) The Dynamic Attribute Service sends the set AT of attributes to the Authorisation Policy
Evaluator. Steps 17 and 18 are repeated to collect the required runtime attributes from all the
Dynamic Attribute Services involved. They are executed if the Client Proxy did not already
collect and send the required attributes.
(19) The Authorisation Policy Evaluator evaluates its authorisation policies using the credentials
and/or attributes and then sends its authorisation decision to the Authorisation Server. Steps
13.1 to 19 are repeated for all the Authorisation Policy Evaluators in APEList.
(20) The Authorisation Server locates the root Web service collection’s Authorisation Decision
Composer, adcroot using the necessary tuple (received from the Database Broker) and sends the
set of authorisation decisions from all the Authorisation Policy Evaluators involved to it.
(21) The Authorisation Decision Composer, adcroot, combines the decisions using a pre-defined
algorithm and sends the final authorisation decision to the Authorisation Server. As mentioned
earlier in Section 4.4, adcroot first delegates the task of combining the Web service and Web
service method level authorisation decisions to WS1’s Authorisation Decision Composer, adcWS1

and then combines that decision with Web service collection level authorisation decisions.
(22) The Authorisation Server gets back to the Security Manager with the final authorisation
decision. If authorisation fails, then the Security Manager sends an “authorisation fail” message
to the Client Proxy and the access is denied to the client (this step is not shown in Figure 7). If
authorisation is successful, the algorithm continues as follows:
(23) The Security Manager acts as a broker for the client’s request and sends the request to the
appropriate Web service (WS1).
(24) WS1 gets back with a result to the Security Manager.
(25) The Security Manager sends the result back to the Client Proxy.
(26) The client (interface) receives the final result from the Web service via the Client Proxy.

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
17

3.2 Extensions to the Web Service Description and Messaging Layers
We require extensions to the Web Service Description and Messaging layers of SOA to support
WSAA. We provide extensions to the SOAP header (messaging layer) to carry authorisation
related credentials and attributes. We extend WSDL (description layer) to include a Web
service’s Authorisation Policy as well as the location of its Security Manager.

3.2.1 WS-AuthorisationPolicy statement

WS-SecurityPolicy [35] is a statement consisting of a group of security policy “assertions”, that
represent a Web Service’s security preference, requirement, capability or other property.
Similarly, we define WS-AuthorisationPolicy as a statement that contains a list of authorisation
assertions. The assertions include what credentials (and from which Certificate and Credential
Authority) and attributes (and from which Dynamic Attribute Service) a client’s Client Proxy
has to collect before invoking a Web Service. The WS-PolicyAttachment standard [36] can be
used to link the WS-AuthorisationPolicy to a Web Service’s WSDL statement. Figure 8 shows the
XML schema skeleton for WS-AuthorisationPolicy.

Figure 8. WS-AuthorisationPolicy XML Schema Skeleton (adopted from [14])

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
18

Figure 9. Extended WSDL schema skeleton example (adopted from [14])

3.2.2 Security Manager Location

When a client wants to invoke a Web service WS1, its Client Proxy requires its Security
Manager’s location. Therefore, we need to give this information in WS1’s WSDL statement. We
introduce a new element called SecurityManager to the WSDL document. The XML schema
skeleton for Security Manager element and an example WSDL statement are shown in Figure 9.

3.2.3 SOAP Header Extension

WS-Security [37] enhancements for confidentiality, integrity and authentication of messages
have extended the SOAP header (SOAP-SEC element) to carry related information. Similarly we
propose an extension to the SOAP header to carry authorisation credentials and attributes to
carry authorisation related information. When a client wants to invoke a Web service object, its
Client Proxy creates an authorisation header object and adds it to SOAP header before making a
SOAP request. We show the XML schema skeleton for the extended SOAP header in Figure 10.
The SOAP-AUTHZ header (shown in bold) consists of the list of credentials and attributes the
Client Proxy collects on behalf of the client.

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
19

Figure 10. XML Schema skeleton for SOAP Authorisation Header (adopted from [14])

3.3 Benefits of the WSAA
Some of the key advantages of the proposed WSAA architecture are as follows:

(a) Support for various access control models: The WSAA supports multiple access control
models including MAC, DAC, and RBAC models. The access policy requirements for each
model can be specified using its own policy language. The policies used for authorisation can be
fine-grained or coarse-grained depending on the Web service requirements. Access control
mechanisms can either use the push model or pull model or even a combination of both for
collecting client credentials.

(b) Support for legacy applications and new Web service based applications: Existing legacy
application systems can still function and use their current access control mechanisms when
they are exposed as Web services to enable an interoperable heterogeneous environment. Once
again, various access policy languages can be used to specify the access control rules for users.
They could adopt a push or a pull model for collecting credentials. At the same time, the WSAA
supports new Web service based applications built to leverage the benefits offered by SOA. New
access control mechanisms can be implemented and used by both legacy and new Web service
applications. A new access control mechanism can itself be implemented as a Web service. All
WSAA requires is an end-point URL and interface for the mechanism’s Authorisation Policy
Evaluator.

(c) Decentralised and distributed architecture: A Web service can have one or more responsible
Authorisation Policy Evaluators involved (each with its own end-point defined) in making the
authorisation decision. The Authorisation Policy Evaluators themselves can be Web services
specialising in authorisation. This feature allows the WSAA to be decentralized and distributed.
Distributed authorisation architecture such as ours provides many advantages such as fault

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
20

tolerance and better scalability and outweighs its disadvantages such as more complexity and
communication overhead.

(d) Flexibility in management and administration: Using the hierarchy approach of managing
Web services and collections of Web services, authorisation policies can be specified at each level
making it convenient for Web service collection managers (WCM) and Web service managers
(WSM) to manage their objects as well as their authorisation related information.

(f) Ease of integration into platforms: Each of the components involved both in the
administration and runtime domains is fairly generic and can be implemented in any
middleware including the .NET platform as well as Java based platforms. The administration
and runtime domain related APIs can be implemented in any of the available middleware. We
have implemented the WSAA within the .NET framework and demonstrated the architecture
using a healthcare application [29].

(g) Enhanced Security: In our architecture, every client request passes through the Web service’s
Security Manager and then gets authenticated and authorised. The Security Manager can be
placed in a firewall zone, which enhances security of collections of Web service objects placed
behind an organisation’s firewall. This enables organisations to protect their Web service based
applications from outside traffic. A firewall could be configured to accept and send only SOAP
request messages with appropriate header and body to the responsible Security Manager to get
authenticated and authorised.

4. Design of the Business Process Authorisation
Architecture (BPAA)

We now discuss the design of our Business Process Authorisation Architecture (BPAA) suitable
for the business process layer of SOA (see Figure 1). Before we delve into the design of the
architecture, we clearly distinguish between static and dynamic business processes2. A static
business process is a pre-composed business process, where all partner service interfaces and
their binding information is known at design time itself. A dynamic business process is more
complex, where only the partner interfaces are defined at design time, but not the actual
bindings to real instances of partner services (Web services and/or business processes). The
binding is made at runtime to real instances of services by letting the client interact with the
business process. For instance, a travel agent may statically bind at design time to always book
flight tickets with Qantas airlines, book cars with Hertz car rental, and finally a hotel room with
Hilton. But in real-world situations, customers want more flexibility, and therefore, travel agents
may opt to expose their services as dynamic business processes, where the customer at runtime
chooses an appropriate partner service (such as airline, car rental or hotel) depending on their
own requirements.

We make an important assumption in this report. A dynamic business process may not only
invoke partner Web services but also partner services that are themselves business processes.
We assume that such business processes are themselves static business processes. We make this
assumption to keep the discussion relatively simple. However, the architecture has been
extended to authorise clients to dynamic business processes that themselves invoke other
partner dynamic business processes (in Section 4.4).

2 In this report, when we mention “business process”, we mean a business process defined using a WS-BPEL
statement.

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
21

4.1 Business Processes Authorisation Architecture (BPAA)

Let us now first briefly describe an overview of the proposed architecture (see Figure 11). Similar
to WSAA, BPAA comprises an administrative domain and a runtime domain. We manage
business processes in the administration domain. Authorisation related components such as
authorisation policy evaluators, certificate and credential authorities and dynamic attribute
services can be managed in the administration domain. Also security administrators can assign a
set of authorisation policy evaluators to authorise requests to business processes.

Once again, similar to WSAA, we have a runtime domain, where the authorisation related
information such as what credentials are required to invoke a particular business process and
how to collect those credentials, is compiled and stored. This makes the authorisation process
efficient. This information is automatically compiled from time to time when necessary using the
information from the administration domain and it can be readily used by components in the
runtime domain. A client makes use of a registry server such as a UDDI directory to find
business process definitions (WS-BPEL [15] statements).

4.2 Design of the Architecture

Figure 11. Business Processes Authorisation Architecture (BPAA) (adopted from [14])

4.2.1 System Components

We make use of the runtime components – Authorisation Policy Evaluators, Certificate and
Credential Authorities, Dynamic Attribute Services and Authorisation Decision Composers in
BPAA as well. We do not change their definitions in BPAA. For further details on these
components, please see definitions 1 to 4 in Section 3.1. Once again, the Authorisation Manager
(AZM) for the organisation is responsible for managing these components.

The runtime domain consists of the Client Proxy, Business Process Security Manager,
Authentication Server, Authorisation Server, and the Authorisation Coordinator components.

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
22

Client Proxy (CP) collects the required authentication certificates and authorisation credentials
from the respective authorities on behalf of the client before sending a request to a business
process and handles the session on behalf of the client with a Business Process Security
Manager.

Business Process Security Manager (BPSM) is responsible for both authentication and
authorisation of the client to a business process. A client’s Client Proxy sends the necessary
authentication certificates and authorisation credentials to the BPSM. It is responsible for
managing all the interactions with a client’s Client Proxy.

Authentication Server (ANS) receives the authentication certificates from BPSM and uses some
mechanism to authenticate the client. We treat ANS as a black box in our architecture as our
focus in this report is on authorisation of the client. We included this component in the business
processes security layer for completeness.

Authorisation Server (AZS) decouples the authorisation logic from the application logic. It is
responsible for locating the business process’ Authorisation Policy Evaluators (APEs), sending
the credentials to them and receiving the authorisation decisions. Once all the decisions come
back, it uses the business process’ ADC to combine the authorisation decisions. If required, AZS
also collects the required authorisation credentials on behalf of clients from the respective
certificate and credential authorities.

Authorisation Coordinator (ACO) is used to coordinate authorisation between a client (by
involving the Client Proxy) and dynamic business processes and their partner services (Web
services and/or business processes). It comprises an Activation Service (AS) and a Registration
Service (RS) that expose standard interfaces to the participants (Client Proxy and Business
Process Security Manager) in the authorisation coordination protocol (based on the WS-
Coordination [38] standard). We discuss the design of the authorisation coordination framework
in Section 4.3.

4.2.2 Business Process Definition and Administration

A Business Process Manager (BPM) manages a set of business processes s/he is responsible for in
an organisation. S/he uses the Administration API to manage the business processes. The
business process definitions are stored in the Business Process Administration Database (BPAD).
We define a business process in Definition 14.

Definition 14. Business Process

We define a Business Process as a tuple bp = {i, l, Σ, WS, BP, B, pa, MD, bpm, bpsm, aco}, where i is
a non-empty string over an alphabet Σ* representing a globally unique identifier such as a URN,
l is a string over an alphabet Σ* representing a network location such as a URL, Σ is a finite set of
states representing the internal state of the business process at a given time, WS is the set of
URNs of bp’s partner Web services or activities, BP is the set of URNs of bp’s partner business
processes or activities, B is the network protocol binding such as SOAP over HTTP for the
business process, pa represents the business process flow algorithm represented in a WS-BPEL
statement, MD is the metadata providing additional description for bp, bpm is the identity (ID) of
the Business Process Manager (BPM) responsible for managing bp. bpsm is the location of the
Business Process Security Manager component responsible for authentication and authorisation
of clients to the business process. aco is the location of the Authorisation Coordinator responsible
for coordinating authorisation of a client to bp’s partner services. aco is defined only for dynamic
business processes and is null for static business processes. Σ, B or MD can be the empty set Ø. If

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
23

B is an empty set, Ø, then the business process defined can either be an abstract business process
or a dynamic business process. An abstract business process is not executable and it only defines
the standard interfaces between a business process and its partner services and the messages
passed between them. In a dynamic business process, individual bindings to partners are made
at runtime using the client’s preferences. If B is not an empty set at business process design time,
then it is a pre-composed or static business process.

4.2.3 Authorisation Administration and Policy Evaluation

A Business Process Manager (BPM) manages the authorisation related information for the
business processes s/he is responsible for. This information is stored in the Business Process
Authorisation tuple. We define the tuple in Definition 15.

Definition 15. Business Process Authorisation

We define Business Process Authorisation as a tuple bpa = {i, bp, APEbp, adcbp}, where i is a URN,
bp is the business process for which bpa is defined. APEbp is the URNs of the set of Authorisation
Policy Evaluators responsible for authorising requests from a client to bp. adcbp is the URN of an
Authorisation Decision Composer. It is responsible for combining at runtime, the authorisation
decisions given out by the set of APEs in APEbp.

4.2.4 Runtime Authorisation Data

Once again, just as in our WSAA, we have a Credential Manager (CRM) component in BPAA. It
is responsible for compiling and storing the authorisation information required by components
in the runtime domain. This runtime authorisation information is stored in the Authorisation
Runtime Database (ARD). The runtime authorisation information consists of two tuples defined in
Definitions 16 and 17. The CRM is invoked from time to time, when a business process object is
created, modified or deleted from the BPAD.

Definition 16. BusinessProcess-Credential-CCA tuple

We define the BusinessProcess-Credential-CCA tuple as pcc = {i, bp, CR, cca, ape}, where i is a
URN, bp is the URN of the business process for which the tuple is defined, CR is the set of
authorisation credentials to be obtained from the Certificate and Credential Authority, cca to get
authorised to invoke bp. ape is the URN of the Authorisation Policy Evaluator that requires these
credentials. Each bp can have one or more of these (tuple) entries in the ARD.

Definition 17. BusinessProcess -Attribute-DAS tuple

We define BusinessProcess-Attribute-DAS tuple as patd = {i, bp, AT, das, ape}, where i is a URN,
bp is the URN of the business process for which the tuple is defined, AT is the set of attributes to
be obtained from a Dynamic Attribute Service, das to make an authorisation decision. ape is the
URN of the Authorisation Policy Evaluator that requires these attributes. This means each bp can
have one or more of these (tuple) entries in the ARD.

4.2.5 Credential Manager (CRM) Algorithms

CRM is an automated component that is invoked when a business process is created, or when an
existing business process (definition) is modified or deleted. It is invoked to update the relevant
runtime objects in the ARD. CRM runs different algorithms for static or pre-composed business
processes and dynamic business processes.

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
24

4.2.5.1 Static Business Process Algorithm

The CRM algorithm for pre-composed or static business processes is defined as follows:
1. For every static business process BPi defined in the BPAD,
 a. For each of the APEs involved,
 i. For each CCA responsible to send credentials to the APE, create a pcc tuple in the ARD
 ii. For each DAS the APE uses for runtime attributes, create a patd tuple in the ARD
 b. For each partner Web Service, locate the WS-Authorisation Policy statement (attached
 to its WSDL statement) and create a PartnerWebService element in the
 BP-AuthorisationPolicy (defined in Section 4.2.7.1) for BPi
 c. For each partner business process, locate the BP-Authorisation Policy statement
 (attached to its WS-BPEL statement) and create a PartnerBusinessProcess element in
 the BP-AuthorisationPolicy for BPi

4.2.5.2 Dynamic Business Process Algorithm

The CRM algorithm for dynamic business processes is defined as follows:
1. For every dynamic business process defined in the BPAD,
 a. For each of the APEs involved,
 i. For each CCA responsible to send credentials to the APE, create a pcc tuple in the ARD
 ii. For each DAS the APE uses for runtime attributes, create a patd tuple in the ARD

4.2.6 Authorisation Algorithms

Similar to WSAA, BPAA supports three authorisation algorithms. The first, push-model algorithm
supports authorisations where a client’s Client Proxy (CP), using the information in BP-
AuthorisationPolicy, collects and sends the required credentials (from CCAs) and attributes
(from DASs) to a Business Process Security Manager (BPSM). The second, pull-model algorithm
supports authorisations where the Authorisation Server itself collects the required credentials
from CCAs and APEs collect the required attributes from DASs. The AZS in this case uses the
runtime objects’ information from the ARD to be able to do so. The third, combination-model
supports both the push and pull models of collecting the required credentials and attributes. An
organisation must deploy one of these algorithms depending on the access control mechanisms
used by their business processes.

When the combination-model algorithm is deployed by an organisation, the organisation’s
Authorisation Manager (AZM) may arbitrarily decide whether the credentials required from a
CCA and dynamic attributes required from a DAS for each business process’ APEs, are fetched
by a CP (push-model) or by the authorisation components themselves (pull-model). The AZM
may decide to give the entire responsibility of fetching the required credentials and attributes to
the CP or to authorisation components or share the responsibility of fetching credentials and
attributes amongst the client proxy and the authorisation components. This information is
reflected in a business process’ BP-AuthorisationPolicy (defined in Section 4.2.7.1). Appendix A
shows the system sequence diagrams for push, pull and combination algorithms for both static
and dynamic business processes. The sequence diagrams are explained in full detail in [14].

4.2.7 Extensions to the Description and Messaging Layers

Similar to WSAA, BPAA also require extensions to the Business Process Description and
Messaging layers of SOA. We provide extensions to the SOAP header to carry authorisation

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
25

related credentials and attributes. We extend WS-BPEL (description layer) to include a business
process authorisation policy (BP-AuthorisationPolicy) as well as the location of its BPSM.

4.2.7.1 BP-AuthorisationPolicy statement

WS-SecurityPolicy [35] is a statement consisting of a group of security policy “assertions”, that
represent a Web Service’s security preference, requirement, capability or other property. We
defined ‘WS-AuthorisationPolicy’ as a statement that contains a list of authorisation assertions,
in Section 3.2.1. Similarly, we define a BP-AuthorisationPolicy here. That BP-AuthorisationPolicy
includes assertions that specify what credentials (and from which CCA) and attributes (and from
which DAS) a client’s Client Proxy has to collect before invoking a business process. These
assertions also include the credentials and attributes required to invoke a static business process’
partner Web services as well as its partner business processes. We extend the WS-BPEL
statement schema to include the BP-AuthorisationPolicy. Note that the partner Web services and
business processes related authorisation information is not included in the BP-
AuthorisationPolicy of a dynamic business process. Such information is only necessary for a
static business process. Finally, the authorisation coordination information is also included in
the BP-AuthorisationPolicy. This information is necessary only for dynamic business processes.
Figure 12 shows the XML schema skeleton for the BP-AuthorisationPolicy.

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
26

Figure 12. XML schema skeleton for BP-AuthorisationPolicy (adopted from [14])

4.2.7.2 Business Process Security Manager Location

When a client wants to invoke a business process BP1, its Client Proxy requires its Business
Process Security Manager’s location. We provide this information in BP1’s WS-BPEL statement.
We introduce a new element Business Process Security Manager to the WS-BPEL statement. The
XML schema skeleton for the Business Process Security Manager element and an example WS-
BPEL statement are shown in Figure 13.

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
27

Figure 13. Extended WS-BPEL schema skeleton example (with BPSM location) (adopted from [14])

4.2.7.3 SOAP Header Extension

In Section 3, we extended the SOAP header to carry authorisation credentials and attributes
required by a client to get authorised to a Web service. Similarly, we need a SOAP-BP-AUTHZ
header to carry authorisation credentials and attributes required to access a business process.
When a client wants to invoke a business process, its Client Proxy creates an authorisation
header object and adds it to the SOAP Header before making a SOAP request to the business
process. Note that the Client Proxy adds partner Web services’ and business processes’ related
credentials and attributes only in the case of a static business process. We show the XML schema
skeleton for the extended SOAP-BP-AUTHZ header in Figure 14.

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
28

Figure 14. XML Schema skeleton for SOAP-BP-AUTHZ Header (adopted from [14])

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
29

4.3 Authorisation Coordination Framework for Dynamic Business
Processes

We leverage the WS-Coordination [38] framework to coordinate authorisation messages
between the Authorisation Coordinator and the participants (Client Proxy and Business Process
Security Manager), to authorise a client to a dynamic business process’ partner services. A
dynamic business process binds to partner services dynamically at runtime. The coordination
framework prescribes the following generic requirements:
 Activation of a new coordinator for the specific coordination protocol, for a particular

application instance (in this case business process instance).
 Registration of participants with the coordinator, such that they receive coordination

protocol messages when necessary.
 Propagation of coordination context information between coordination protocol participants.
 An entity to drive the coordination protocol through to completion.

The Client Proxy is responsible for the activation of a new instance of an Authorisation
Coordinator. It is also the entity responsible to drive the coordination protocol to completion. It
is aware that authorisation coordination is required to get the client authorised to a dynamic
business process, as the BP-AuthorisationPolicy has the information about the Authorisation
Coordinator, the coordination protocol used and its type (authorisation coordination), and
finally its location.

The Business Process Security Manager is another participant in the coordination protocol.
During the course of execution of a dynamic business process, if the WS-BPEL Engine (BPEL
Engine for short) needs to invoke a partner service, it sends a message about the same to the
business process’ Business Process Security Manager. The Business Process Security Manager
then informs the Authorisation Coordinator that a partner service has been invoked and it needs
authorisation credentials from the client (Client Proxy). The Authorisation Coordinator informs
the Client Proxy about the same. The Client Proxy then fetches the required credentials and gets
back to the Authorisation Coordinator. The Authorisation Coordinator then sends a message
with the received credentials to the Business Process Security Manager. The Business Process
Security Manager sends these credentials to the BPEL Engine. The BPEL engine uses these
credentials and then continues execution of the partner service.

Figure 15 shows the initial stages of invoking a dynamic business process. The Client Proxy
locates the activation service and sends it a message asking for the creation of an Authorisation
Coordinator and a corresponding coordination context. An example of a
CreateCoordinationContext message is shown in Figure 16. The activation service’s location, the
requester reference (Client Proxy’s address) as well as the URI of the coordination type
(authorisation coordination) are included in the activation message.

Assuming that an authorisation coordination service has been registered with the coordination
framework, a coordinator is created (and exposed as a registration service) and a context such as
that shown in Figure 17 is duly returned to the Client Proxy as part of the
CreateCoordinationContextResponse message. We have also included the business process’ URN
(in the place of any element in the message’s XML schema definition) in the coordination context
response message to propagate the identity of the business process for which authorisation
messages are coordinated. It is shown in bold in Figure 17.

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
30

Figure 15. Authorisation Coordination Framework: Activation and Application Messages (adopted from

[14])

Figure 16. Authorisation Coordination Activation Message (adopted from [14])

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
31

Figure 17. Coordination Context example (adopted from [14])

The Client Proxy interacts with the Business Proxy Security Manager sending and receiving
messages as normal, with the exception that it embeds the authorisation coordination context
(which carries the authorisation information) in a SOAP header block in its messages to provide
authorisation related credentials for those partner services (Web services and/or business
processes) that are invoked. Also the Client Proxy itself registers as a participant with the
Authorisation Coordinator.

The Business Process Security Manager understands the protocol messages associated with our
authorisation service. If it has not registered a participant previously, it does so once it receives a
SOAP message from the Client Proxy, containing an authorisation context header, using the
details provided in the context (via the WS-Coordination registration service URI). This register
operation occurs every time that the Business Process Security Manager receives a particular
context for the first time.

When the Client Proxy receives the final response from the Business Process Security Manager
after execution of the business process, it sends a Completion Message to the Authorisation
Coordinator. The Authorisation Coordinator then sends the Completion Message to the Business
Process Security Manager, registered as a participant to the Authorisation Coordinator. Any
subsequent calls by the Client Proxy (on behalf of the client) to that business process with the
same context will result in the service being unable to register a participant since the context
details will no longer resolve to a live coordinator to register with. This second part of the
lifecycle of the authorisation coordination is shown in Figure 18. An example of Register and
RegisterResponse messages is shown in Figure 19. A register message consists of the address of
the registration service, the address of the requester (Client Proxy), protocol identifier
(authorisation coordination protocol), and finally the participant’s (Client Proxy Participant
WSDL interface’s) address. A register response message comprises the requester address (Client
Proxy’s address) and the coordination protocol service’s address (Authorisation Service’s address,
see Figure 19).

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
32

Figure 18. Authorisation Coordination Framework: Registration and Coordination Messages (adopted

from [14])

The authorisation coordination messages passed between the Authorisation Coordinator and the
participants are asynchronous. Therefore, we need to define standard interfaces both at the
coordinator end – for the Activation Service, the Registration Service and the Authorisation
Service (see Figure 18), as well as for the participant ends — for Client Proxy Participant and
Business Process Security Manager Participant.

4.3.1 Authorisation Coordinator WSDL Interfaces

Activation Service and Registration Service WSDL interfaces are exactly the same as defined in
the WS-Coordination framework. We show them in Figure 20. The Authorisation Service
handles the authorisation coordination protocol related messages. We define the WSDL interface
for the Authorisation Service in Figure 21. The interface exposes four different asynchronous
operations. The GetPartnerCredentials operation is invoked by the Business Process Security
Manager, when credentials are required by the BPEL Engine to invoke partner services. The
Client Proxy invokes the overloaded PartnerCredentials operation to send the authorisation
credentials and attributes required to invoke a partner service (parameter of type
authzcoor:CredentialsWSResponse is used to send a partner Web service’s credentials;
parameter of type authzcoor:CredentialsBPResponse is used to send a partner business process’
credentials). The Client Proxy invokes the CompletionMessage operation to inform the
Authorisation Coordinator to terminate the coordination process.

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
33

Figure 19. Register Request and Response Messages (adopted from [14])

Figure 20. Activation and Registration Service WSDL interfaces (adopted from [14])

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
34

Figure 21. Authorisation Service WSDL interface (adopted from [14])

4.3.2 Participant Interfaces

We show the Client Proxy Participant WSDL interface in Figure 22. The interface exposes four
operations. The CreateCoordinationContextResponse operation is invoked by the Authorisation
Coordinator (Activation Service) to send the coordination context to the Client Proxy. The
RegisterResponse operation is invoked by the Authorisation Coordinator (Registration Service) to
send the registration response message to the Client Proxy. The GetPartnerCredentials is invoked
by the Authorisation Coordinator (Authorisation Service) to inform the Client Proxy that
authorisation credentials are required to invoke a partner service (Web service or business
process). The Authorisation Coordinator (Authorisation Service) invokes the Error operation to
let the Client Proxy know of any coordination related error.

Figure 22. Client Proxy Participant WSDL Interface (adopted from [14])

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
35

We show the Business Process Security Manager Participant WSDL interface in Figure 23. The
interface exposes four operations. The CreateCoordinationContextResponse operation is invoked by
the Authorisation Coordinator (Activation Service) to send the coordination context to the
Business Process Security Manager. The RegisterResponse operation is invoked by the
Authorisation Coordinator (Registration Service) to send the registration response message to
the Business Process Security Manager. The GetPartnerCredentials is invoked by the BPEL Engine
(responsible to execute a business process) to inform the Business Process Security Manager that
authorisation credentials are required to invoke a partner service (Web service or business
process). The Authorisation Coordinator (Authorisation Service) invokes the overloaded
PartnerCredentials operation to send the authorisation credentials and attributes required to
invoke a partner service (parameter of type authzcoor:CredentialsWSResponse is used to send a
partner Web service’s credentials; parameter of type authzcoor:CredentialsBPResponse is used
to send a partner business process’ credentials). The Authorisation Coordinator (Authorisation
Service) invokes the Error operation to let the Business Process Security Manager know of any
coordination related error.

Figure 23. Business Process Security Manager Participant WSDL Interface (adopted from [14])

Figures A-4, A-5, and A-6 in Appendix A show the system sequence diagrams for dynamic
business process authorisation using the coordination framework.

4.4 Extension to the Authorisation Coordination Framework

At the beginning of Section 4, we assumed that a dynamic business process has partner services
that are either Web services or static business processes. In this section, we extend the
authorisation coordination framework to allow a dynamic business process to invoke other
dynamic business processes. In other words, a dynamic business process may have another
dynamic business process as a partner.

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
36

We extend the WSDL interfaces of the Business Process Security Manager Participant and the
Authorisation Service (part of the Authorisation Coordinator) to carry the required authorisation
coordination related messages amongst them. We show these extended WSDL interfaces in
Figures 24 and 25.

Let us consider a scenario, where a dynamic business process, BP1, invokes another dynamic
business process, BP2.

We introduce an asynchronous operation, InvokeDynamicBP (shown in bold in Figure 24), to the
Business Process Participant WSDL interface. It is invoked by the BPEL Engine executing BP1 to
inform BP1’s Business Process Security Manager that a partner dynamic business process (BP2)
has been invoked by BP1.

Figure 24. Extended Business Process Security Manager WSDL Interface (adopted from [14])

We introduce an asynchronous operation, InvokeDynamicBP, to the Authorisation Service WSDL
interface. It is invoked by the Business Process Security Manager (BP1’s in this case) to inform
BP1’s Authorisation Coordinator, that a partner dynamic business process (in this case BP2) has
been invoked. Now BP1’s Authorisation Coordinator acts as a participant with BP2’s
Authorisation Coordinator. Therefore we need the Authorisation Service WSDL interface to also
expose the ActivationResponse and RegistrationResponse (asynchronous) operations, to receive the
activation and registration response messages from partner business process’ Authorisation
Coordinator (in this case BP2’s). The newly introduced operations are shown in bold in
Figure 25.

We now discuss the sequence of steps involved in authorisation coordination when a dynamic
business process (BP1) invokes another dynamic business process (BP2). Figure 26 shows the

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
37

sequence diagram. For clarity of discussion, we only show the authorisation coordination
framework related steps in Figure 26. The other steps involved in authorisation algorithms, such
as collection of credentials and attributes by the Client Proxy, and authorisation of the client by
authorisation components, are not shown in the figure.

Figure 25. Extended Authorisation Service WSDL Interface (adopted from [14])

4.4.1 Extended Authorisation Coordination Steps

(1) The Client Proxy sends an asynchronous activation message to BP1’s Authorisation
Coordinator (ACO-BP1).
(2) ACO-BP1 sends an asynchronous activation response message to the Client Proxy.
(3) The Client Proxy sends an asynchronous register message to ACO-BP1
(4) ACO-BP1 sends an asynchronous registration response message to the Client Proxy.
(5) The Client Proxy sends an asynchronous invocation request to BP1’s Business Process
Security Manager (BPSM-BP1), along with the authorisation coordination context in SOAP
header.
(6) BPSM-BP1 sends an asynchronous register message to ACO-BP1.
(7) ACO-BP1 sends an asynchronous registration response message to BPSM-BP1.
(8) The Business Process Security Manager acts as a broker for the client’s request and sends the
(asynchronous) invocation message to BP1’s BPEL Engine (BPEL-BP1).
(9) BPEL-BP1 starts executing BP1. In the course of BP1’s execution, when BP2, a dynamic business
process needs to be invoked, BPEL-BP1 stops execution.
(10) BPEL-BP1 sends an asynchronous (using InvokeDynamicBP operation) to BPSM-BP1.
(11) BPSM-BP1 uses BP2’s WS-BPEL statement and sends an asynchronous activation message to
BP2’s Authorisation Coordinator (ACO-BP2).
(12) ACO-BP2 sends an asynchronous activation response message to the BPSM-BP1, along with
the authorisation coordination context (Context-BP2).

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
38

(13) BPSM-BP1 sends an asynchronous message (using InvokeDynamicBP operation) along with
the Context-BP2 in the SOAP header to the ACO-BP1.
(14) ACO-BP1 using the information in Context-BP2 sends an asynchronous register message to
ACO-BP2.
(15) ACO-BP2 sends an asynchronous registration response message to ACO-BP1.
(16) ACO-BP1 sends an asynchronous message (using InvokeDynamicBP operation) along with
the Context-BP2 in the SOAP header, to BPSM-BP1.
(17) BPSM-BP1 sends an asynchronous message (using InvokeDynamicBP operation) to BPEL-BP1.
(18) BPEL-BP1 invokes BP2. In the course of execution of BP2, when a partner Web service or
static business process is invoked, its BPEL Engine (BPEL-BP2) informs its Business Process
Security Manager (BPSM-BP2), which in turn informs ACO-BP2. All these steps happen at this
stage and are not shown in Figure 26.
(19) ACO-BP2 sends an asynchronous message to ACO-BP1 (using GetPartnerCredentials
operation). Note that ACO-BP1 is a registered as a participant with ACO-BP2.
(20) ACO-BP1 sends an asynchronous message to Client Proxy (using GetPartnerCredentials
operation on Client Proxy Participant interface).
(21) The Client Proxy uses the WSDL or WS-BPEL statement of the partner service and collects
the required authorisation credentials and attributes (steps not shown in Figure 26) and sends
them back to ACO-BP1 using an asynchronous operation (PartnerCredentials).
(22) ACO-BP1 sends the credentials and attributes to ACO-BP2 using an asynchronous operation
(PartnerCredentials). ACO-BP2 sends them to BPSM-BP2, which in turn sends them to BPEL-BP2

(not shown in Figure 26).
(23) BPEL-BP2 continues with the execution of BP2 and gets back to BPEL-BP1 (not shown in
Figure 26). BPEL-BP1 sends BP1’s invocation result to BPSM-BP1 as an asynchronous message.
(24) BPSM-BP1 sends BP1’s invocation result as an asynchronous message to the Client Proxy
after the complete execution of BP1. The Client Proxy sends the result to the client interface.

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
39

Figure 26. Extended Authorisation Coordination Framework (adopted from [14])

4.4.2 Discussion

We have discussed how BPAA handles client authorisation to both static and dynamic business
processes. We initially assumed that their partner business processes are always static. In
Section 4.4.1, we extended the authorisation framework to handle authorisation where a
dynamic business process invokes another partner dynamic business process. However, there is
another scenario we have not covered. What happens when a static business process, say BP1,
invokes another partner that is a dynamic business process, say BP2?

In this case, the BPEL Engine invoking BP1, informs BP1’s Business Process Security Manager
(BPSM) that a partner (dynamic) business process, BP2, has been invoked. The Business Process
Security Manager sends a message to the Client Proxy about the same, along with the location of
the WS-BPEL statement of BP2. The Client Proxy activates BP2’s Authorisation Coordinator
(ACO-BP2), registers as a participant, and then participates in the authorisation coordination
protocol with (ACO-BP2) and gets the client authorised to BP2. Once BP2 finishes execution, it
returns to BP1. BP1’s BPEL Engine notifies its BPSM (BPSM-BP1) that BP2 has returned with a
response, and then continues BP1’s execution. BPSM-BP1 informs the Client Proxy that BP2 has
returned with a response. Then the Client Proxy sends a completion message to ACO-BP2 and
ends the authorisation coordination session with ACO-BP2.

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
40

4.5 Benefits of the BPAA

The BPAA provides all the benefits of the WSAA (see Section 3.3) as well as the following
benefits:

(a) Support for both static and dynamic business processes: A business process can either be
static, where it is pre-composed and the partner services are known at design time, or, dynamic,
where only the interfaces to the partner services are exposed by the business processes, and the
binding to real services is made at runtime depending on client requirements. Also a business
process may have Web services or even other business processes as partners. We took all such
scenarios into consideration and provided a comprehensive architecture for authorisation for the
business processes layer of SOA. We provided a comprehensive authorisation coordination
framework to authorise clients to dynamic business processes. Also we extended our
authorisation coordination framework to allow for both static and dynamic business processes
to invoke partner services that are themselves dynamic business processes.

(c) Decentralised security administration: The partners involved in a business process
workflow are allowed to autonomously control their authorisation policies. The partners can be
either from within an organisation or from multiple organisations. In the case of static business
processes, the information about the authorisation credentials required to invoke partner
services is exposed in the WS-BPEL statement (using BP-AuthorisationPolicy) at design time
itself.

(d) Dynamic discovery and orchestration of a business process’ partners’ authorisation
evaluation components: In the case of dynamic business processes, the BPAA coordinates the
authorisation where binding to real partner services happens at runtime depending on client
requirements. The Authorisation Coordination components’ location is exposed to the client
(Client Proxy) using the BP-AuthorisationPolicy attached to the WS-BPEL statement. When the
business process workflow reaches a stage where some credentials are required by the access
control system of the partner involved, the Authorisation Coordinator makes the Client Proxy
aware of this. The Client Proxy fetches the required credentials using the partner service WSDL
or WS-BPEL statement and sends them to the Authorisation Coordinator. The Authorisation
Coordinator sends them to the Business Process Security Manager, a participant in the
coordination protocol, which in turn sends it to the BPEL Engine to continue invocation of the
business process.

(e) Non-disclosure of policies: The BPAA does not require the partner services to disclose their
policies to the partner that is controlling the business process. The authorisation of the client
happens at the same place, where the partners originally intended it to be. For example, if a
Travel Agent Service (TAS) creates a business process that binds and interacts with Qantas
airlines, Hertz car rental and Hilton hotel at design or run time, the TAS does not require the
different partners involved to disclose their policies in order to manage the authorisation
decisions involved. The authorisation of the client to these partner services is evaluated based on
their own policies and at their own policy decision points. Therefore, organisations can now
leverage the services offered by the BPAA, and do business by binding to portal agents even if
they do not trust them to perform client authorisation.

5. Concluding Remarks

We proposed a comprehensive authorisation framework for SOA in this report. The framework
comprises the WSAA and the BPAA. We described the architectural framework, the

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
41

administration and runtime aspects of both our architectures and their components for secure
authorisation of Web services and business processes as well as the support for the management
of authorisation information. Both the WSAA and the BPAA support push-model, pull-model
and combination-model authorisation algorithms.

The WSAA has been implemented and integrated it into the Microsoft .NET framework and the
applicability of the WSAA to the healthcare domain has been demonstrated in [29]. As part of
future work, we would also like to implement the BPAA and demonstrate our comprehensive
SOA authorisation framework using an appropriate Defence application.

Our understanding is that IBM’s Defence Operations Platform (DOP)3 has been adopted by the
Australian Defence to build SOA services. We believe there is scope in the future to take into
consideration real Defence services and their access control requirements, and research potential
integration points of our comprehensive SOA authorisation framework into the DOP.

6. References

1. Rescorla, E. (2001) SSL and TLS: Designing and Building Secure Systems, Addison Wesley
2. IETF Secretariat (2004) IP Security Protocol, http://www.ietf.org/html.charters/ipsec-

charter.html.
3. World Wide Web Consortium (W3C) (2008) XML-Signature Syntax and Processing,

http://www.w3.org/TR/xmldsig-core/.
4. World Wide Web Consortium (W3C) (2002) XML Encryption Syntax and Processing,

http://www.w3.org/TR/xmlenc-core.
5. World Wide Web Consortium (W3C) (2003) SOAP v1.2, http://www.w3.org/TR/soap12-

part1/.
6. World Wide Web Consortium (W3C). Web Services Description Language (WSDL) v1.1,

http://www.w3.org/TR/wsdl. (2001) [Accessed.
7. B. Atkinson et al (2002) Web Services Security (WS-Security) Specification, http://www-

106.ibm.com/developerworks/webservices/library/ws-secure/. April
8. S. Anderson et al. (2005) Web Services Trust Language (WS-Trust), http://www-

106.ibm.com/developerworks/library/specification/ws-trust/.
9. Varadharajan, V. (2002) Distributed Authorization: Principles and Practice. In: Coding

Theory and Cryptology, Lecture Notes Series, Institute for Mathematical Sciences, National
University of Singapore. Singapore University Press

10. Agarwal, S., Sprick, B. and Wortmann, S. (2004) Credential Based Access Control for
Semantic Web Services. American Association for Artificial Intelligence

11. Kraft, R. (2002) Designing a Distributed Access Control Processor for Network Services
on the Web. In: ACM Workshop on XML Security, Fairfax, VA, USA: November 22

12. Yagüe, M. I. and Troya, J. M. (2002) Euroweb 2002 Conference. The Web and the GRID: from
e-science to e-business, Oxford, UK

13. Ziebermayr, T. and Probst, S. (2004) International Conference on Web Services (ICWS), San
Diego, CA, USA

14. Indrakanti, S. (2007) PhD Thesis: On Engineering Authorization Systems for Web Services
based Service-Oriented Architecture. Sydney, Macquarie University

15. OASIS (2007) Web Services Business Process Execution Language Version 2.0, http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

16. Sandhu, R., et al. (1996) Role-Based Access Control Models. IEEE Computer 29(2) 38-47

3 http://www-01.ibm.com/software/industry/defense-operations-platform/

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
42

17. Oracle. JAAS Authorization Tutorial. (2000) [Accessed 20 April, 2011]; Available from:
http://download.oracle.com/javase/1.5.0/docs/guide/security/jaas/tutorials/index.h
tml.

18. Thomas S. Cook, et al. Orchestrating BMD Control in Extended BPEL. Naval postgraduate
School

19. Duminda Wijesekera, James B. Michael and Anil Nerode (2005) BMD Agents: An Agent-
Based Framework to Model Ballistic Missile Defense Strategies. In: 6th International
Workshop on Policies for Distributed Systems and Networks, IEEE Stockholm, Sweden

20. Karp, A. H. (2006) Authorization-Based Access Control for the Service Oriented
Architecture. In: Fourth International Conference on Creating, Connecting, and Collaborating
through Computing, Berkeley, CA, USA: 26-27 January 2006

21. Indrakanti, S. and Varadharajan, V. (2005) An Authorization Architecture for Web
Services. In: 19th Annual IFIP WG 11.3 Working Conference on Data and Applications
Security, Storrs, Connecticut, USA, Springer LNCS

22. Koshutanski, H. and Massacci, F. (2002) An Access Control System for Business Processes for
Web Services. DIT-02-102, [Technical Report] Informatica e Telecomunicazioni, University
of Trento

23. Mont, M. C., Baldwin, A. and Pato, J. (2003) Secure Hardware-based Distributed
Authorisation Underpinning a Web Service Framework. HPL-2003-144,

24. Bertino, E., Crampton, J. and Paci, F. (2006) Access Control and Authorization
Constraints for WS-BPEL. In: International Conference on Web Services (ICWS): 18-22 Sept.
2006

25. Indrakanti, S. and Varadharajan, V. (2011) Coordination based Distributed Authorization
for Business Processes in Service Oriented Architectures. In: The Sixth International
Conference on Internet and Web Applications and Services, St. Maarten, The Netherlands
Antilles

26. Indrakanti, S. (2012) On the Design Requirements for a Comprehensive SOA Authorisation
Framework; DSTO-CR-2011-0251 DSTO

27. Indrakanti, S., Varadharajan, V. and Hitchens, M. (2005) Analysis of Existing
Authorization Models and Requirements for Design of Authorization Framework for the
Service Oriented Architecture. In: The 2005 International Symposium of Web Services and
Applications, Las Vegas, USA: June 27-30

28. Indrakanti, S., Varadharajan, V. and Hitchens, M. (2005) Principles for the Design of
Authorization Framework for the Service Oriented Architecture. In: International
Conference on Internet Technologies and Applications (ITA 05), Wrexham, North Wales, UK:
September 7-9

29. Indrakanti, S., Varadharajan, V. and Agarwal, R. (2007) On the design, implementation
and application of an authorisation architecture for web services. International Journal of
Information and Computer Security 1 (1/2)

30. Bellwood, T., et al. UDDI Specification version 3.0.2, http://uddi.org/pubs/uddi_v3.htm.
(2004) [Accessed.

31. ITU-T Recommendation, June 1997. 459 (1997) X.509 (1997 E): Information Technology -
Open Systems Interconnection - The Directory: Authentication Framework.

32. Bacon, J. and Moody, K. (2002) Toward open, secure, widely distributed services.
Communications of the ACM 45 (6) 59-64

33. Chadwick, D. W. and Otenko, A. (2002) The PERMIS X.509 role based privilege
management infrastructure. In: Proceedings of the seventh ACM symposium on Access
control models and technologies. ACM Press 135-140

34. Kraft, R. (2002) A model for network services on the web. In: The 3rd International
Conference on Internet Computing (IC 2002): June

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
43

35. Giovanni Della-Libera et al. (2002) Web Services Security Policy Language (WS-
SecurityPolicy), http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnglobspec/html/ws-securitypolicy.asp.

36. S. Bajaj et al (2004) Web Services Policy Attachment (WS-PolicyAttachment),
http://www-106.ibm.com/developerworks/library/specification/ws-polatt/.
September

37. B. Atkinson et al (2002) WS-Security Specification, http://www-
106.ibm.com/developerworks/webservices/library/ws-secure/. April

38. OASIS (2009) Web Services Coordination (WS-Coordination).

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
44

Appendix A
1. Sequence diagrams for static business process authorisation algorithm

Figure A1. Push Model Authorisation Algorithm for Static Business Processes

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
45

Figure A2. Pull Model Authorisation Algorithm for Static Business Processes

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
46

Figure A3. Combination Model Authorisation Algorithm for Static Business Processes

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
47

2. Sequence diagrams for dynamic business process authorisation algorithm

Figure A4. Push Model Authorisation Algorithm for Dynamic Business Processes

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
48

Figure A5. Pull Model Authorisation Algorithm for Dynamic Business Processes

UNCLASSIFIED
DSTO-TN-1193

UNCLASSIFIED
49

Figure A6. Combination Model Authorisation Algorithm for Dynamic Business Processes

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

DOCUMENT CONTROL DATA 1. PRIVACY MARKING/CAVEAT (OF DOCUMENT)

2. TITLE

On the Design of a Comprehensive Authorisation Framework for
Service Oriented Architecture (SOA)

3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS
THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT
CLASSIFICATION)

 Document (U)
 Title (U)
 Abstract (U)

4. AUTHOR(S)

Sarath Indrakanti

5. CORPORATE AUTHOR

DSTO Defence Science and Technology Organisation
PO Box 1500
Edinburgh South Australia 5111 Australia

6a. DSTO NUMBER
DSTO-TN-1193

6b. AR NUMBER
AR-015-670

6c. TYPE OF REPORT
Technical Note

7. DOCUMENT DATE
July 2013

8. FILE NUMBER
2012/1175751/1

9. TASK NUMBER
07/012

10. TASK SPONSOR
Brian Palm, ASD

11. NO. OF PAGES
47

12. NO. OF REFERENCES
38

13. DSTO Publications Repository

http://dspace.dsto.defence.gov.au/dspace/

14. RELEASE AUTHORITY

Chief, Cyber and Electronic Warfare Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for public release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500, EDINBURGH, SA 5111
16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CITATION IN OTHER DOCUMENTS Yes
18. DSTO RESEARCH LIBRARY THESAURUS

Web services, SOA, Business Processes, Authorisation, Access control

19. ABSTRACT
Service Oriented Architecture (SOA) has attracted considerable industry attention because of the benefits it offers such as allowing
interoperability over a heterogeneous environment, amongst others. However, security is one of the main roadblocks for enterprises when it
comes to the development and deployment of their SOAs. Although there are several SOA security standards available, there is as yet no
standard available for SOA authorisation. In this report, we propose a comprehensive authorisation framework for SOA.

Page classification: UNCLASSIFIED

	ABSTRACT
	Executive Summary
	Contents
	Acronyms
	1. Introduction
	2. SOA Authorisation Challenges
	3. Design of the Web Services Authorisation Architecture (WSAA)
	3.1 System Components
	3.2 Extensions to the Web Service Description and Messaging Layers
	3.3 Benefits of the WSAA

	4. Design of the Business Process Authorisation Architecture (BPAA)
	4.1 Business Processes Authorisation Architecture (BPAA)
	4.2 Design of the Architecture
	4.3 Authorisation Coordination Framework for Dynamic Business Processes
	4.4 Extension to the Authorisation Coordination Framework
	4.5 Benefits of the BPAA

	5. Concluding Remarks
	6. References
	Appendix A
	DISTRIBUTION LIST
	DOCUMENT CONTROL DATA

